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Surface tension and vapour–liquid phase coexistence of variable-range hard-core
attractive Yukawa fluids

Jayant K. Singh*

Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Received 14 December 2008; final version received 25 January 2009)

The vapour–liquid phase coexistence and surface tension of hard-core Yukawa fluids with short attraction range, l ¼ 8.0,
9.0 and 10.0, are reported using grand-canonical transition-matrix Monte Carlo (GC-TMMC) with the histogram
reweighting method. Surface tension is calculated using finite-size scaling approach of Binder. We also compare GC-TMMC
results with the available literature data for Yukawa fluids with l ¼ 1.8, 3.0 and 4.0. Critical properties obtained from
rectilinear diameter approach and least square-technique are also reported. GC-TMMC results are found to be more precise
than the previous reported values. We also present the corresponding state of surface tension for extremely short-range
attractive Yukawa fluids.
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1. Introduction

In recent years, phase transition for colloidal suspensions

has become a subject of growing interest as it is commonly

found in many industrial products such paints, inks, food,

detergents and cosmetics. Furthermore, it plays an

important role in biology, for example, blood. Interaction

range of colloidal solvent can be modified by an addition

of charged nanoparticles [1,2], non-adsorbing polymer [3]

or other solutes [4,5]. Yukawa potential is one of the most

suitable models for such systems since, upon varying the

interaction range, one can represent the behaviour of some

real system. Moreover, its analytical tractability adds to its

popularity as a simple model for protein liquids [6,7],

charged stabilised colloids [8] and ionic fluids [9,10].

Yukawa potential is represented by the following

expression:

uðrÞ ¼
1 if r , s

2 1s
r
exp ð2lðr 2 sÞÞ if r $ s

8<
: ; ð1Þ

where 1 is the potential depth, s is the molecular diameter

and l is the range of the potential.

Vapour–liquid equilibria of Yukawa potential has

been studied by a few authors recently by various

theoretical approaches [6,7,11–13]. Furthermore, this was

aided by molecular simulation studies on the same model

system [4,14,15]. The molecular simulation techniques

mainly used by earlier workers were based on Gibbs

ensemble Monte Carlo (GEMC) [16–19] and slab-based

molecular dynamics (MD) and Monte Carlo (MC) methods

[14,20,21]. The results of the former method yield

coexistence properties of the bulk phase without the contact

of the phases; hence GEMC is unable to capture interfacial

properties. On the other hand, the latter method is mainly

popular to obtain interfacial properties but requires a larger

system size for the stabilisation of the vapour–liquid

interface. Moreover, such a method is not suitable at higher

temperature for the evaluation of bulk properties compared

with other available methods [22]. The other prominent

approaches for the study of vapour–liquid equilibrium by

molecular simulation include grand-canonical transition-

matrix Monte Carlo [23,24], Gibbs–Duhem integration [25],

and NPT þ test particle [26–28]. Grand-canonical tran-

sition-matrix Monte Carlo (GC-TMMC) stands out

among all the above methods due to its ability accurates to

obtain phase equilibria and interfacial properties in

conjunction with the finite-size scaling approach of Binder

[29]. Due to its greater efficiency than GEMC and its

parallelisation ability, it has been applied to a variety of

systems [30–35].

Molecular simulation data for vapour–liquid inter-

facial properties of Yukawa fluids are scarce. Moreover,

there is a lack of agreement in the data available in the

literature, which is based on either slab-based MC or MD

techniques. In particular, phase coexistence and surface

tension for HCAY fluid with short interaction range is not

studied in details via computer simulations. Most of the

molecular simulation studies until now have been done

with 1:8 # l # 7:0. This work is primarily to provide

the phase equilibria and interfacial properties of

Yukawa fluids with extremely short attraction range

using GC-TMMC and finite-size scaling approach [29].
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Additionally, we compare the results of variable

attraction range via GC-TMMC with those available in

the literature.

The rest of the paper is organised as follows: in the

next section, we briefly describe methods used for

calculating the phase equilibria and interfacial properties

by molecular simulation along with simulation details;

Section 3 presents the results and discussion, and we

conclude in Section 4.

2. Methodology

In this work, simulations are conducted in the grand-

canonical ensemble, where the chemical potential m,

volume V and temperature T are kept fixed and particle

number N and energy U fluctuate. The probability ps of

observing a microstate s with energy US and particle

number NS is,

ps ¼
1

J

V Ns

L3NsNs!
exp ½2bðUs 2 mNsÞ�; ð2Þ

where b ¼ 1=kBT is the inverse temperature, J is the

grand-canonical partition function and L is the de Broglie

wavelength. The probability P(N) of observing a

macrostate with a given number of molecules (density) is

given by,

PðNÞ ¼
X
Ns¼N

ps: ð3Þ

We employ the transition-matrix Monte Carlo scheme

[36] with an N-dependent sampling bias to obtain the

probability distribution PðNÞ. The method monitors the

acceptance probability of attempted MC moves and

subsequently uses this information to calculate the

macrostate transition-probability matrix. For every

attempted move from a microstate s to a microstate t,

regardless of whether the move is accepted, we update a

collection matrix C with the acceptance probability aðs!

tÞ ¼ min ½1;pt=ps� as follows,

CðN !MÞ ¼ CðN !MÞ þ aðs! tÞ

and

CðN ! NÞ ¼ CðN ! NÞ þ 12 aðs! tÞ;

ð4Þ

where N and M represent the macrostate labels for

microstates s and t, respectively. At any time during the

simulation, the macrostate transition-probability matrix

can be obtained by appropriately normalising the

collection matrix,

PðN !MÞ ¼
CðN !MÞP
OCðN ! OÞ

: ð5Þ

Macrostate probabilities are obtained by utilising the

detailed balance expression,

PðNÞPðN !MÞ ¼ PðMÞPðM ! NÞ:

For a grand-canonical simulation, where transitions in

N are such that N ! N ;N ! N þ 1 and N ! N 2 1, the

transition-probability matrix P is tri-diagonal. In such

conditions, a sequential approach provides a suitable

means for obtaining the macrostate probabilities,

lnPðN þ 1Þ ¼ lnPðNÞ2 ln
PðN þ 1! NÞ

PðN ! N þ 1Þ

� �
: ð6Þ

To ensure adequate sampling of all states, we employ a

multi-canonical sampling [37] scheme that encourages the

system to sample all densities with uniform frequency.

This procedure is implemented by assigning each

macrostate a weight h(N) that is inversely proportional

to the current estimate of its probability,

hðNÞ ¼ 2lnPðNÞ. Acceptance criteria are modified to

account for the bias as follows,

ahðs! tÞ ¼ min 1;
hðMÞpt

hðNÞps

� �
; ð7Þ

where h(N) and h(M) are weights corresponding to

microstates s and t, respectively. Introduction of a

weighting function does not alter the mechanism through

which the collection matrix is updated. The unbiased

acceptance probability is still used to update the collection

matrix.

Simulations are conducted at a specified value of the

chemical potential, which is not necessarily close to the

saturation value. To determine the phase-coexistence

value of the chemical potential, the histogram reweighting

method of Ferrenberg and Swendson [38] is used. This

method enables one to shift the probability distribution

obtained from a simulation at chemical potential m0 to a

probability distribution corresponding to a chemical

potential m using the relation,

lnPðN;mÞ ¼ lnPðN;m0Þ þ bðm2 m0ÞN: ð8Þ

To determine the coexistence chemical potential, we

apply the above relation to find the chemical potential that

produces a probability distribution PcðNÞ, where the areas

under the vapour and liquid regions are equal. Saturated

densities are related to the first moment of the vapour

and liquid peaks of the coexistence probability distri-

bution. To calculate the saturation pressure, we use the

expression

bpV ¼ ln
X
N

PcðNÞ=Pcð0Þ

 !
2 ln ð2Þ: ð9Þ
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The critical properties are estimated from a least-

square fit of the law of rectilinear diameter [39]

r l 2 rv ¼ C1 12
T

Tc

� �bc

þC2 12
T

Tc

� �bcþD

; ð10Þ

where r l and r v are the liquid and vapour densities,

respectively, and C1 and C2 are fitting parameters.

The critical exponent bc is taken as 0.325 and D ¼ 0.51.

The critical temperature, Tc, estimate from the above is

utilised to get the critical density from the least-square fit

to the following expression.

r l þ rv

2
¼ rc þ C3ðT 2 TcÞ: ð11Þ

Critical pressure is calculated using the least-square

fitting to the following expression

lnP ¼ Aþ B=T ; ð12Þ

where A and B are constants.

In this work, we adopt units such that s and 1 are unity.

Reduced units used in this study are temperature

T* ¼ kT/1, density r* ¼ rs 3, pressure P* ¼ Ps 3/1 and

surface tension g* ¼ gs 2/1.

Simulations for calculating saturated densities and

vapour pressures are conducted using Intel Xeon dual-core

dual processor servers. The MC move distribution is: 30%

particle displacement, 35% particle insertion and 35%

particle deletion. One of the salient features of GC-TMMC

is the ability to use a multiprocessor to collect the

transition matrix. In this approach, we run the simulation

simultaneously on a multi-processor (in the current work

we have used two quad-core processors). Each core of the

processor works on a specific range of the particle number

i.e. each processor has the responsibility to fill a certain

range of the transition matrix. We frequently gather the

transition probabilities from individual processors in the

global collection matrix. Hence, weights used in the multi-

canonical sampling get updated frequently.

Typical maximum molecule numbers for these

simulations varied from 350 to 900 for phase-coexistence

calculations. Simulation size is increased at temperature

closer to critical point. In general, we have used 8–10

simulation box size for phase equilibria calculation. Four

runs were performed to calculate the statistical error. Each

run for phase coexistence took around 2–4 h depending on

the system size. Surface tension for each temperature is

calculated based on box length, L ¼ 10, 12 and 14.

Maximum system size for such calculation is kept around

2400–2600. The run length for each simulation run varied

from 10–48 h depending on system size.

3. Results and discussions

In the first part of this section, we compare the results of

GC-TMMC with that from GEMC [19] and slab-based

MC and MD methods [21]. Figure 1 presents the phase-

coexistence envelope for interaction range l ¼ 1.8.

Saturated densities and pressure obtained by GC-TMMC

contain less than 0.5% error. Liquid phase density data of

GC-TMMC are in reasonably good agreement with the

GEMC data of Shukla [19] at substantial subcritical

temperatures. However, GEMC data appear to deviate

significantly from GC-TMMC values at higher tempera-

ture. This may be because close to the critical temperature,

GEMC is known to provide erroneous values of densities

Figure 1. Coexistence vapour and liquid densities of hard-core
Yukawa fluid at l ¼ 1.8. Solid curve represents the data obtained
from GC-TMMC. Filled circles and triangles are the data from
GEMC [19] and canonical Monte Carlo and molecular dynamic
[21] simulations, respectively.

Figure 2. The vapour pressure curve of hard-core Yukawa fluid
at l ¼ 1.8. The results of this work are shown with the other
literature values. Solid line represents the data obtained from GC-
TMMC. Filled circles and triangles are the data from GEMC [19]
and canonical Monte Carlo and molecular dynamic [21]
simulations, respectively.
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of liquid and vapour phases due to phase switch behaviour

of the simulation box [40]. Moreover, system size used by

Shukla for GEMC [19] appears to be insufficient for

temperature closer to critical temperature. On the other

hand, there is a good agreement between GC-TMMC and

slab-based methods for saturated liquid density. Never-

theless, saturated vapour density due to slab-based MC and

MD [21] is lower than that from GC-TMMC.

Figure 2 shows the saturated vapour pressure in a

Clausius–Clapeyron plot, as calculated via GC-TMMC.

Comparison with the literature data follows the same trend

as with the orthobaric densities. There is in general

reasonable agreement between slab-based methods and

GC-TMMC; however, error associated with GEMC data is

substantial. Furthermore, literature data are slightly

scattered around the straight line based on the current

work. Interestingly, the relative behaviour of these

methods changes at lower interaction range as shown in

Figure 3, which presents the vapour pressure for Yukawa

fluid with l ¼ 3.0. It is clear that pressure calculated using

GEMC simulation is in extremely good agreement; on the

contrary to the case for l ¼ 1.8, slab-based methods yield

pressure away from the GCMC simulation data. Table 1

tabulates the results for l ¼ 1.8, 3.0 and 4.0 via GC-TMMC.

We have used least-square technique and rectilinear

diameter approach to calculate the critical points. Our

estimates based on the GCMC simulations are tabulated in

Table 2 along with the literature estimates. Similar to the

behaviour seen in our comparison of the phase equilibrium

Table 1. Vapour–liquid coexistence data from grand-canonical transition-matrix Monte Carlo simulations of hard-core Yukawa molecules
with variable interaction range (l ¼ 1.8, 3.0, 4.0).

l T* bm P* r
*

v r
*

l g * (This work) g * (Lit.)

1.8 0.9 23.98294 0.018831 0.023882 0.73401

1.0 23.41456 0.039793 0.050696 0.66869 0.3721 0.375

0.302

1.1 22.98782 0.073522 0.103315 0.56381 0.1211 0.134

0.094

1.12 22.91553 0.082114 0.1197510 0.53781

1.13 22.88112 0.086644 0.1297118 0.522911

1.14 22.84752 0.091364 0.1414319 0.50583

1.15 22.81473 0.096311 0.1554515 0.48811 0.0283 0.10
0.051

3.0 0.55 24.189722 0.009213 0.018716 0.84776 0.3839 0.393

0.58 23.83118 0.014381 0.029052 0.809916 0.294

0.6 23.61846 0.018911 0.038363 0.78052 0.215

0.65 23.17181 0.034601 0.074221 0.69809 0.1331 0.144

0.66 23.09462 0.038622 0.0846310 0.67909

0.67 23.02015 0.043033 0.0969910 0.656511

0.68 22.94921 0.047791 0.111678 0.63395

0.69 22.88193 0.052923 0.1293929 0.60701

0.70 22.81762 0.058451 0.1524414 0.57606

4.0 0.45 24.155561 0.007835 0.0195616 0.888831

0.47 23.83217 0.011661 0.029133 0.863313

0.485 23.61668 0.015341 0.038636 0.835110 0.1953 0.218

0.50 23.41935 0.019852 0.050886 0.803116 0.1629 0.224

0.515 23.24039 0.025273 0.0667012 0.77013

0.53 23.07598 0.031793 0.0879612 0.730613 0.08288 0.094

0.55 22.87927 0.042386 0.1312047 0.663624

Subscripts v and l represents vapour and liquid, respectively. The errors in densities and pressures, chemical potential and surface tension represent one SD of the mean for four
independent runs. Comparison between the surface tension obtained from GC-TMMC in the present work with those of the canonical ensemble MD and MC simulations of [21].

Figure 3. The vapour pressure curve of hard-core Yukawa fluid
at l ¼ 3.0. The results of this work are shown with the other
literature values. Solid line represents the data obtained from GC-
TMMC. Filled triangles are the data from canonical Monte Carlo
and molecular dynamic [21] simulations, respectively.
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data, critical point parameters also reflect the similar

scatter. For Yukawa fluid with attractive interaction range

l ¼ 1.8, GEMC results are closer to that of GC-TMMC.

Critical pressure particularly is not well predicted by the

earlier workers. For example, in slab-based methods,

Monte Carlo and molecular dynamics yield substantial

different critical pressure. For l ¼ 3.0 and 4.0, the critical

point predicted by the slab-based method appears

erroneous.

We also compared the surface tension data calculated

by GC-TMMC along with finite-size scaling technique.

Figure 4 presents a typical probability distribution curve

obtained for two different subcritical temperatures. Finite-

size scaling for l ¼ 1.8 for two different temperatures as

per Binder’s formalism is shown in Figure 5. Table 1

summarises the surface tension results for l ¼ 1.8, 3.0 and

4.0. The results are in general good agreement with

the slab-based methods. In general, slab-based method

are efficient for surface tension calculation at lower

temperature, which was also pointed out in our earlier

work on square-well fluid [22]. It is evident that GC-TMMC

is an excellent choice for phase equilibrium calculation as

well for surface tension particularly at moderate and higher

temperature; however, at significantly subcritical tempera-

ture, molecular dynamics appears to be more efficient

method for interfacial property calculations.

Sampling difficulty at lower temperatures and at higher

liquid densities, as observed in this work, is also common

in various other systems such as polymers and associating

fluids. For example, sampling of chain molecules is not

efficient without utilising bias sampling techniques.

Configuration bias Monte Carlo technique [41] is

particular known to be extremely successful for these

systems. Since its introduction, it has been applied

Table 2. The critical temperature T
*

c, density r
*

c and pressure P
*

c

data for hard-core Yukawa fluids with variable interaction range
l estimated from GC-TMMC, rectilinear diameter approach and
least-square fit and compared with literature values.

l T
*

c r
*

c P
*

c Source

1.8 1.1801 0.3151 0.1102 This work
1.179 0.308 0.102 [21]
1.190 0.306 0.121
1.192 0.294 [18]

3.0 0.7221 0.3551 0.0721 This work
0.725 0.351 0.099 [21]
0.715 0.375 [18]

4.0 0.5721 0.3851 0.0571 This work
0.593 0.361 0.081 [21]
0.576 0.377 [18]

8.0 0.3822 0.4475 0.0445 This work

9.0 0.3622 0.4545 0.0434 This work
0.427 0.57 [17]

10.0 0.3432 0.4712 0.0391 This work

Figure 4. (a) Particle number probability distribution, for hard-
core Yukawa fluid at l ¼ 1.8 against number of particles in the
box for varying box sizes at T* ¼ 1.0 at coexistence chemical
potential. Curves a, b, c and d are for simulation box lengths 8,
10, 12 and 14, respectively. (b) Same as in (a) but for T* ¼ 1.1.

Figure 5. The system size dependence of the surface tension for
hard-core Yukawa fluid with l ¼ 1.8 at T* ¼ 1.0 and 1.1, which
are represented by filled circles and squares, respectively. The
dashed lines show the linear extrapolation to infinite system size.
L is the edge length of the cubic simulation box.
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to variety of systems [31,42]. Simulations of associating

fluids, on the other hand, face a different problem. Even

vapour phase of a strongly associating fluid can have local

high density and it usually is a very slow relaxing system.

Configurations, which are important due to favourable

energy where molecules are associated, may be difficult to

find through usual MC moves. Similarly, bound molecules

may be rarely separated through the usual MC trials. Such

problems can be remedied through the use of algorithms

such as aggregation–volume bias move [43,44] or

unbound–bound bias move [32,45], which have been

used by many authors to alleviate sampling difficulties in

associating fluids. The above methods can be combined

with the GC-TMMC approach for an efficient sampling of

high-density system. However, we did not employ any

biasing technique apart from multi-canonical approach in

this work. A thorough investigation of the sampling

efficiency of GC-TMMC along with different biasing

techniques for a variety of systems particularly at higher

density is kept for a future study.

It is known that the range of attraction interaction

determines the existence of stable vapour–liquid coex-

istence. Minimum attraction range should be one-sixth of

the range of repulsion for stable liquid–vapour coex-

istence. It was shown by Dijkstra [4] that for short-range

Yukawa fluid, l ¼ 7 and 25, fluid–fluid coexistence

regions are metastable with respect to freezing.

In particular, vapour–liquid equilibria data for short

attractive interaction range l . 8 are scarce for some or

absent for others. Due to the metastability of fluid–fluid

coexistence at extremely small interaction range, simu-

lation is difficult to perform. Additionally, the temperature

range of vapour–liquid phase transition diminishes

significantly with the reduction of the attraction range

and further adds to the complexity of obtaining the correct

coexistence properties. We have done numerous calcu-

lations using GC-TMMC to obtain the vapour–liquid

coexistence and surface tension data for l ¼ 8.0, 9.0 and

10.0. Table 3 summarises the data. Figure 6 presents the

phase diagram of the above system. The behaviour is not

much different from long interaction range systems,

except that coexistence envelop is found to be smaller and

shrinks with the reduction in the interaction range.

Recently, Orea and Duda [20] have worked on the

corresponding states law of the Yukawa fluid. Surface

tension of these fluids is found by these authors to fall on a

master curve, as suggested by the corresponding state

theory. On the other hand, our work as shown in Figure 7

suggests a slight variation with the range of potential,

specifically for short interaction range fluids. The above

Table 3. Vapour–liquid coexistence data from GC-TMMC simulations of hard-core Yukawa molecules with variable interaction range
(l ¼ 8.0, 9.0, 10.0).

l T* bm P* rv rl g

8.0 0.35 23.185411 0.018121 0.07122 0.9015

0.36 22.971511 0.024345 0.10274 0.85211 0.04983

0.365 22.872418 0.027998 0.12538 0.8174 0.033227

0.37 22.77802 0.032121 0.15631 0.7723 0.01886

0.372 23.24211 0.033891 0.17129 0.7496 0.013520

0.374 23.20603 0.035782 0.19085 0.7292

0.375 22.68867 0.036767 0.204320 0.7114

9.0 0.335 23.10756 0.019092 0.08021 0.9064

0.34 22.989211 0.022424 0.09853 0.8704

0.345 22.87965 0.026112 0.12151 0.8471 0.035125

0.35 22.77466 0.030373 0.15327 0.8002

0.351 22.75425 0.031292 0.16224 0.7913 0.01634

0.352 22.73498 0.032186 0.1701 0.7733 0.01439

0.353 22.71259 0.033326 0.1842 0.7593

0.354 22.692917 0.0343111 0.1952 0.7452 0.00759

0.355 22.673413 0.0353510 0.2082 0.7269

0.356 22.654110 0.036436 0.2223 0.7115

0.357 22.63614 0.037445 0.2352 0.6991

10.0 0.33 22.860710 0.025493 0.12453 0.8557 0.0335

0.331 22.837010 0.026379 0.13078 0.8469

0.332 22.81438 0.027234 0.13754 0.8414

0.335 22.74554 0.030102 0.16256 0.7997 0.0182

0.336 22.72345 0.031083 0.17106 0.7972

0.337 22.70124 0.032122 0.18233 0.7844

0.338 22.68022 0.033161 0.19622 0.7632

0.34 22.636113 0.0355010 0.229440 0.7197 0.00528

Subscripts v and l represents vapour and liquid, respectively. The errors in densities and pressures, chemical potential and surface tension represent one SD of the mean for four
independent runs.
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observation may be due to the difference in the critical

property estimated from GC-TMMC and other methods.

Furthermore, the calculation of critical point using

rectilinear diameter approach is an approximate method

and may lead to dubious values particularly at short

interaction range, where the nature of the phase behaviour

is more flat. To verify the behaviour of corresponding

states of Yukawa fluid, we reserve the calculation of

critical point for a future study using finite-size scaling

[46], which is proven to be the precise technique. This

method would certainly be more useful and perhaps

necessary for short-range Yukawa fluid, where free-energy

difference between two phases is found to be extremely

small, which is also evident from the surface tension

values listed in Table 3.

4. Conclusions

In summary, we have demonstrated grand-canonical

transition-matrix Monte Carlo for the calculation of

vapour–liquid coexistence and interfacial properties for a

model for colloidal suspension. The method, in general, is

found superior to GEMC and slab-based methods for the

calculation of phase equilibria and interfacial temperature

in every aspects. However, at lower temperature, slab-

based method is more preferred for the calculation of

interfacial properties as GCMC simulations are extremely

difficult to conduct for dense liquids. Surface tension data

of extremely short interaction range, l $ 8, is found to

deviate slightly from those with l , 8 in the correspond-

ing plot, which may be due to the error associated with

rectilinear diameter approach and scaling analysis.
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